
Journal of Cellular Biochemistry 84:343±348 (2002)

Support Vector Machines for Prediction of Protein
Subcellular Location by Incorporating
Quasi-Sequence-Order Effect

Yu-Dong Cai,1* Xiao-Jun Liu,2 Xue-biao Xu,3 and Kuo-Chen Chou4

1Shanghai Research Centre of Biotechnology, Chinese Academy of Sciences, Shanghai, 200233, China
2Institute of Cell, Animal and Population Biology, University of Edinburgh, West Mains Road,
Edinburgh EH9 3JT, United Kingdom
3Department of Computing Science, University of Wales, College of Cardiff, Queens Buildings,
Newport Road, PO Box 916, Cardiff CF2 3XF, United Kingdom
4Computer-Aided Drug Discovery, Upjohn Laboratories, Kalamazoo, Michigan 49001-4940

Abstract Support Vector Machine (SVM), which is one class of learning machines, was applied to predict the
subcellular location of proteins by incorporating the quasi-sequence-order effect (Chou [2000] Biochem. Biophys. Res.
Commun. 278:477±483). In this study, the proteins are classi®ed into the following 12 groups: (1) chloroplast, (2)
cytoplasm, (3) cytoskeleton, (4) endoplasmic reticulum, (5) extracellular, (6) Golgi apparatus, (7) lysosome, (8) mito-
chondria, (9) nucleus, (10) peroxisome, (11) plasma membrane, and (12) vacuole, which account for most organelles
and subcellular compartments in an animal or plant cell. Examinations for self-consistency and jackknife testing of the
SVMs method were conducted for three sets consisting of 1,911, 2,044, and 2,191 proteins. The correct rates for self-
consistency and the jackknife test values achieved with these protein sets were 94 and 83% for 1,911 proteins, 92 and
78% for 2,044 proteins, and 89 and 75% for 2,191 proteins, respectively. Furthermore, tests for correct prediction rates
were undertaken with three independent testing datasets containing 2,148 proteins, 2,417 proteins, and 2,494 proteins
producing values of 84, 77, and 74%, respectively. J. Cell. Biochem. 84: 343±348, 2002. ß 2001 Wiley-Liss, Inc.
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Knowledge of the subcellular location of a
given protein is very important for understand-
ing its function [Chou and Elrod, 1999a,b; Chou,
2000a,b]. However, due to the rapid increase in
the number of protein sequences, it is time
consuming and costly to determine their sub-
cellular location solely by laboratory experi-
ments. Accordingly, it is highly desirable to
develop an effective algorithm that can quickly
and accurately predict protein subcellular loca-
tion. Many efforts have been made in this regard
[NakashimaandNishikawa,1994;Cedanoetal.,
1997; Reinhardt and Hubbard, 1998; Chou and
Elrod, 1998, 1999b].

The covariant discriminate algorithm [Chou
and Elrod, 1999b], which was developed from

the least Mahalanobis distance algorithm
[Chou, 1995], has proved particularly success-
ful. However, all these methods were based
on the amino acid composition and ignored
sequence order. Such prediction approaches
might be approximately rational, but the suc-
cess rates would be limited. To improve pre-
diction quality, Chou [2000b] proposed a new
method in which the covariant discriminate
algorithm [Chou and Elrod, 1999b] was aug-
mented to incorporate the quasi-sequence-order
effect. The new method allows using both the
sequence-order-coupling numbers that re¯ect
the sequence order effect and amino acid com-
position in order to improve prediction quality.
The incorporation of the quasi-sequence-order
effect for prediction of protein subcellular
location is one step forward in this area. In the
current paper, by incorporating sequence order
effect, we have employed Vapnik's Support
Vector Machine (SVM) [Vapnik, 1995] to predict
protein subcellular location.
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SUPPORT VECTOR MACHINE

Support Vector Machine is a class of learning
machines based on statistical learning theory.
The basic idea of applying SVM to pattern
classi®cation can be stated brie¯y: First, map
the input vectors into one feature space (possi-
ble with a higher dimension), either linearly or
non-linearly, which is relevant to the selection
of the kernel function. Then, within the feature
space from the ®rst step, seek an optimized
linear division, i.e., construct a hyperplane
which separates two classes (this can be ex-
tended to multi-class). SVM training always
seeks a global optimized solution and avoids
over-®tting, so it has the ability to deal with a
large number of features. A complete descrip-
tion to the theory of SVMs for pattern recogni-
tion is in Vapnik's book [Vapnik, 1998]. SVMs
have been used in a range of problems includ-
ing drug design [Burbidge et al., 2000], image
recognition, and text classi®cation [Joachims,
1998].

In this paper, we apply Vapnik's SVM
[Vapnik, 1995] for predicting protein subcellu-
lar location. We download the SVMlight, which
is an implementation (in C Language) of SVM
for the problem of pattern recognition. The opti-
mization algorithm used in SVM light has been
described [Joachims, 1999a,b]. The code has
been used in text classi®cation and image re-
cognition [Joachims, 1998].

Suppose we are given a set of samples, i.e., a
series of input vectors

Xi 2 Rd �i � 1; . . . ;N�
with corresponding labels yi 2 f� 1;ÿ 1g �i �
1; . . . ;N� where ÿ1 and � 1 are used to stand
respectively for the two classes. The goal here is
to construct one binary classi®er or derive one
decision function which has small probability of
misclassifying a future sample (from the avail-
able samples). Both the basic linear separable
case and the most useful linear non-separable
case for most real life problems are considered
here.

Linear Separable Case

In this case, there exists a separating hyper
plane whose function is ~W � ~X � b � 0, which
implies:

yi� ~W �~xi � b� � 1; i � 1; . . . ;N

By minimizing 1
2 k ~Wk2 subject to this con-

straint, the SVM approach tries to ®nd a unique
separating hyperplane. Here k ~Wk2 is the Eucli-
dean norm of ~w, which maximizes the distance
between the hyper plane (Optimal Separating
Hyperplane or OSH in Cortes and Vapnik,
[1995]) and the nearest data points of each
class. The classi®er is called the largest margin
classi®er.

By introducing Lagrange multipliersai, using
the Karush-Kuhn-Tucker (KKT) conditions
and the Wolfe dual theorem of optimization
theory, the SVM training procedure amounts to
solving the following convex QP problem:

Max :
Xn

i�1

�i ÿ 1

2

Xn

i�1

Xn

j�1

�i�j � yiyj � ~Xi � ~Xj

subject to the following two conditions:

�i � 0

XN
i�1

�i yi � 0; i � 1; . . . ;N

The solution is a unique globally optimized
result having the following expansion:

~W �
XN
i�1

yi�i �~xi

Only if the corresponding ai> 0, these ~xi are
called Support Vectors.

When a SVM is trained, the decision function
can be written as:

f ~x� � � sgn
XN
i�1

yi�i �~x �~xi � b

 !
sgn( ) appears in the above formula as the given
sign function.

Linear non-separable case. Two impor-
tant techniques needed for this case are given
respectively as below:

(i) ``soft margin'' technique.
In order to allow for training errors, Cortes

and Vapnik [1995] introduced slack variables:

�i > 0; i � 1; . . . ;N

and relaxed separation constraint is given as:

yi ~w �~xi � b� � � 1ÿ �i; �i � 1; . . . ;N�
and the OSH can be found by minimizing

1

2
~wk k2�C

XN
i�1

�i
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instead of 1
2 k~wk2 for the above two con-

straints in ``Linear separation case,'' where c
is a regularization parameter used to decide a
trade-off between the training error and the
margin.

(ii) ``kernel substitution'' technique
SVM performs a nonlinear mapping of the

input vector ~x from the input space Rd into a
higher dimensional Hilbert space, where the
mapping is determined by the kernel function.
Then like in ``Linear separation case,'' it ®nds
the OSH in the space H corresponding to a non-
linear boundary in the input space.

Two typical kernel functions are listed below:

K ~xi; ~xj

ÿ � � ~xi � ~xj � 1
ÿ �d

K ~xi; ~xj

ÿ � � exp�ÿrk~xi ÿ~xjk2�

where the ®rst one is called the polynomial
kernel function of degree d, which will even-
tually revert to the linear function when d� 1,
the latter one, is called the RBF (Radial Basic
Function) kernel. Finally, for the selected ker-
nel function, the learning task amounts to solv-
ing the following QP problem,

Max :
XN
i�1

�i ÿ 1

2

XN
i�1

XN
j�1

�i�j � yiyj � K�~Xi � ~Xj�

subject to:

0 � ai � C

XN
i�1

�iyi � 0; i � 1; . . . ;N

and the form of the decision function is

f ~x� � � sgn
XN
i�1

yi�i � K ~x;~xi� � � b

 !

For a given data set, only the kernel function
and the regularity parameter C must be select-
ed to specify one SVM.

Training and Prediction of Protein
Subcellular Location

Following the procedures and rationale as
given by Chou and Elrod [1999b], the proteins
are classi®ed into the following 12 groups:

(1) chloroplast, (2) cytoplasm, (3) cytoskele-
ton, (4) endoplasmic reticulum, (5) extracell, (6)
Golgi apparatus, (7) lysosome, (8) mitochon-
dria, (9) nucleus, (10) peroxisome, (11) plasma
membrane, and (12) vacuole, which have cover-
ed almost all the organelles and subcellular
compartments in an animal or plant cell.

Following the procedures as given by Chou
[2000], the sequence order effect can be approxi-
mately re¯ected through a set of sequence-
order-coupling numbers as de®ned below:

Suppose a protein chain of L amino acid
residues:

R1R2R3R4R5R6R7 � � �RL;

then the sequence order effect can be approxi-
mately re¯ected through a set of sequence-
order-coupling numbers as de®ned below:

�1 � 1

Lÿ 1

XLÿ1

i�1

Ji;i�1

�2 � 1

Lÿ 2

XLÿ2

i�1

Ji;i�2

�3 � 1

Lÿ 3

XLÿ3

i�1

Ji;i�3

� � �
�' � 1

Lÿ '
XLÿ'
i�1

Ji;i�'

8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:

; �' < L� �1�

where t1 is called the 1st-rank sequence-order-
coupling number that re¯ects the coupling
mode between all the most contiguous residues
along a protein sequence, t2 is the 2nd-rank
sequence-order-coupling number that re¯ects
the coupling mode between all the 2nd most
contiguous residues, and so forth. In Eq. [1], the
coupling factor Ji, j is a function of amino acids Ri

and Rj, we choose

Ji; j � D2 Ri;Rj

ÿ �
; �2�

where D Ri;Rj

ÿ �
is the physicochemical distance

from amino acid Ri to amino acid Rj that was
derived based on the residue properties of hy-
drophobicity, hydrophilicity, polarity, and side
chain volume, see Joachims [1999b].

Suppose there are N proteins forming a set S,
which is the union of m subsets; i.e.,

S � S1 [ S2 [ S3 [ S4 [ � � � [ Sm �3�
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Each subset is composed of proteins with a
same subcellular location. Its size is given by
n��� � 1; 2; 3; . . . ;m�, where nx represents the
number of proteins in the subset Sx.

The kth protein in the subset Sx should now be
described by

X�
k �

x�k;1
x�k;2

..

.

x�k;20�'

266664
377775; �k � 1; 2; . . . ;n�; � � 1; 2; . . . ;m�;

�4�
where

x�k;u �
f �
k;uP20

j�1
f �
k;j
�w
P'

q�1
��

k;q

; �1 � u � 20�
w��

k;uÿ20P20

j�1
f �
k;j
�w
P'

q�1
��

k;q

; �20� 1 � u � 20� '�

8>><>>:
�5�

where f �k; j is the normalized occurrence
frequency of the 20 amino acids in the kth
protein in subset Sx, ��k;q is the qth-rank
sequence-order-coupling number computed
according to Eqs. [1] and [2] for the kth protein
in subset Sx, and w is the weight factor for the
sequence-order effect. Here, we choose w� 0.1.
As we can see from Eqs.[4] and [5], the ®rst 20
components re¯ect the effect of the amino acid
composition, while the components from 20� 1
to 20�j re¯ect the effect of sequence order.

In this research, j� 13, therefore, a protein
can be represented by a point or a vector in a 33-
D space. These are taken as the input of the
SVM.

ThecomputationswerecarriedoutonaSilicon
Graphics IRIS Indigo workstation (Elan 4000).

In this research, for the SVM, the width of
the Gaussian RBFs is selected as that which
minimized an estimate of the VC-dimension.
The parameter C that controls the error-margin
tradeoff is set at 100. After being trained, the
hyperplane output by the SVM was obtained.
This indicates that the trained model, i.e., hy-
perplane output which is including the impor-
tant information, has the function of identifying
the subcellular location.

In this research, ®rst the self-consistency and
jackknife tests (leave-one-out) of the method
were performed, and later the calculation was
extended to deal with an independent data set.
As a result, high rates of correct prediction were
obtained in all three tests.

RESULTS AND DISCUSSION

Success Rates of Self-Consistency and Jackknife
Test of SVMs

In this study, the examination for the self-
consistency of the SVMs method was tested for
the three sets from Table I [Chou, 2000b]: 1,911
proteins (chloroplast: 145, cytoplasm: 571,
extracell: 224, nucleus: 272, plasma membrane:
699); 2,044 proteins (chloroplast: 145, cyto-
plasm: 571, endoplasmic reticulum: 49, extra-
cell: 224, mitochondria: 84, nucleus: 272, plasma
membrane: 699); 2,191 proteins (chloroplast:
145, cytoplasm: 571, cytoskeleton: 34, endoplas-
mic reticulum: 49, extracell: 224, Golgi appara-
tus: 25, lysosome: 37, mitochondria: 84, nucleus:
272, peroxisome: 27, plasma membrane: 699,
vacuole: 24). As a result, the correct rate of self-
consistency reached 94, 92, and 89% for 1,911,
2,044, and 2,191 proteins, respectively, which
showed that after being trained, the SVMs

TABLE I. Self-Consistency and Jackknife Test Results for the 2,191 Proteins

Rate of correct prediction for each subcellular location

(1)Chloroplast (2)Cytoplasm (3)Cytoskeleton (4)Endoplasmic
reticulum

Self-consistency 121/145� 84% 557/571� 98% 19/34� 56% 31/49�63%
Jackknife test 82/145�57% 504/571� 88% 15/34� 44% 15/49�31%

(5)Extracell (6)Golgi apparatus (7)Lysosome (8)Mitochondria
Self-consistency 180/224� 80% 10/25� 40% 32/37� 86% 59/84�70%
Jackknife test 127/224� 57% 3/25�12% 20/37� 54% 35/84�42%

(9)Nucleus (10)Peroxisome (11)Plasma membrane (12)Vacuole
Self-consistency 243/272� 89% 4/27�15% 675/699�97% 16/24�67%
Jackknife test 198/272� 73% 1/27� 4% 636/699�91% 6/24� 25%
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method had grasped the complicated relation-
ship between the amino acid composition,
sequence order, and subcellular location.

The above results indicate a very good self-
consistency of the current prediction method.
Below we describe the cross-validation tests.
The single independent data set test, sub-
sampling test, and jackknife test are the three
methods ordinarily used for cross-validation. Of
the three cross validation methods, the jack-
knife test is deemed most effective and objective
[Chou, 2000b; Cai, 2001]. During the jackknif-
ing process, both the training and testing
datasets are actually open, and a protein will
in turn move from one to the other [Chou,
2000b]. As a result, the correct rate reaches 83,
78, and 75% for 1,911, 2,044, and 2,191 protein
sets, respectively.

The results of both self-consistency and jack-
knife tests for 12 subcellular locations of the
2191 protein set is provided in Table I. The
success rates by jackknife test are generally
lower than those by the self-consistency test. In
the self-consistency test, each protein sequence
from a data set is predicted using the rule
parameters derived from the same data set, the
so-called training data set. As a consequence,
the parameters derived from the training data
set include the information of a protein later
plugged back in the test. This will certainly give
a somewhat optimistic error estimate because
the same proteins are used to derive the
prediction rules and to test themselves. Never-
theless, such a re-substitution test is absolutely
necessary because it re¯ects the self-consis-
tency of a prediction method, especially for its
algorithm part. A prediction algorithm cer-
tainly cannot be deemed as a good one if its
self-consistency is poor. In other words, the re-
substitution test is necessary but not suf®cient
for evaluating a prediction method. As a com-
plement, a cross-validation test for an indepen-
dent data set is needed because it can re¯ect
the extrapolating effectiveness of a prediction
method. This is important especially for check-
ing the validity of a training data set: whether it
contains suf®cient information to re¯ect all the
important features concerned so as to yield a
high success rate in practical application. How-
ever, how to perform the cross-validation is a
subtle problem. It is well known that the single
independent data set test, sub-sampling test,
and jackknife test are the three methods often
used for cross-validation (see a review article by

Chou and Zhang [1995] for a comprehensive
discussion about this). Of the three cross vali-
dation methods, the jackknife test is deemed as
the most effective and objective one [Cai, 2001;
Zhou and Assa-Munt, 2001]. During jackknif-
ing, each protein in a data set is in turn singled
out as a tested protein and all the rule-para-
meters are computed using the remaining
proteins without including this one. In other
words, the protein cellular location of each
protein is predicted by the rules derived using
all other proteins except the one that is being
predicted. In the process of jackknife test, both
the training data set and testing data set are
actually open, and a protein will in turn move
from each to other [Chou et al., 1998]. The cross-
validation through such a jackknife approach is
much more objective and rigorous than the
other two test approaches. In view of this, it is
also clear why the success rate by jackknife test
for small subset, such as Golgi apparatus and
lysosome, is reduced more remarkably than
those of a larger subset. Therefore, the informa-
tion loss resulting from jackkni®ng will have
greater impact on the small subsets than the
larger ones. It is anticipated that the jackknife
rates for the small subsets can be improved by
adding into them more new proteins that have
been found belonging to the locations de®ned by
these subsets.

Success Rate of Correct Prediction of the
SVMs for an Independent Dataset

The corresponding three independent testing
datasets contain 2,148 proteins (chloroplast:
112, cytoplasm: 761, extracell: 95, nucleus: 418,
plasma membrane: 762); 2,417 proteins (chlor-
oplast: 112, cytoplasm: 761, endoplasmic reti-
culum: 106, extracell: 95, mitochondria: 163,
nucleus: 418, plasma membrane: 762); 2,494
proteins (chloroplast: 112, cytoplasm: 761,
cytoskeleton: 19, endoplasmic reticulum: 106,
extracell: 95, Golgi apparatus: 4, lysosome: 31,
mitochondria: 163, nucleus: 418, peroxisome:
23, plasma membrane: 762, vacuole: 0), respec-
tively. The correct prediction rates reach 84, 77,
and 74% for the 2,148, 2,417, and 2,494 protein
sets, respectively.

The datasets used here were generated by
strictly following certain screening procedures
to minimize the possibility of any two similar
sequences occurring in a same category. In
addition, the sequence matches performed be-
tween all members in each category of proteins
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thus obtained have indicated that most pairs
have very low sequence identity (< 20%). The
average sequence identity in each category is
smaller than 12%. The number of pairs hav-
ing high sequence identity (> 90%) is very
small. The percentages of pairs having > 90%
sequence identity in the chloroplast, cyto-
plasm, cytoskeleton, endoplasmic reticulum,
extracellular, Golgi apparatus, lysosome, mito-
chondria, nucleus, peroxisome, plasma mem-
brance, and vacuole subsets are 0.12, 0.04,
0.036, 0.034, 0.02, 0, 0, 0, 0.01, 0.057, 0.01, and
1.1%, respectively. Obviously, such a small
fraction of high-sequence identity proteins
cannot be the origin of the high rates obtained
by SVM.

The SWISS-PROT codes for all the proteins
studied here are from Appendix A of Chou
and Elrod [1999b]. From these protein codes,
all the protein sequences employed in this
study can be retrieved from the SWISS-PROT
data bank.

CONCLUSION

The above results, together with those
obtained by the covariant discriminant predic-
tion algorithm [Chou and Elrod, 1998, 1999b;
Chou, 2000b], indicate that the cellular location
of a protein can be predicted with reasonable
accuracy. It is anticipated that the covariant
discriminant algorithm [Chou and Elrod, 1998,
1999b; Chou, 2000b] and the SVMs, if comple-
mented with each other, will become a powerful
tool for predicting the subcellular locations of
proteins, and hence facilitate the systematic
analysis of genome data.
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